Height pairings in families of deformations.
This paper concerns the arithmetic of certain -adic families of elliptic modular forms. We relate, using a formula of Rubin, some Iwasawa-theoretic aspects of the three items in the title of this paper. In particular, we examine several conjectures, three of which assert the non-triviality of an Euler system, a -adic regulator, and the derivative of a -adic -function. We investigate sufficient conditions for the first conjecture to hold and show that, under additional assumptions, the first...
Let be a -adic local field with residue field such that and be a -adic representation of . Then, by using the theory of -adic differential modules, we show that is a Hodge-Tate (resp. de Rham) representation of if and only if is a Hodge-Tate (resp. de Rham) representation of where is a certain -adic local field with residue field the smallest perfect field containing .