Previous Page 4

Displaying 61 – 66 of 66

Showing per page

On varieties of Hilbert type

Lior Bary-Soroker, Arno Fehm, Sebastian Petersen (2014)

Annales de l’institut Fourier

A variety X over a field K is of Hilbert type if X ( K ) is not thin. We prove that if f : X S is a dominant morphism of K -varieties and both S and all fibers f - 1 ( s ) , s S ( K ) , are of Hilbert type, then so is X . We apply this to answer a question of Serre on products of varieties and to generalize a result of Colliot-Thélène and Sansuc on algebraic groups.

Orthogonality and complementation in the lattice of subspaces of a finite vector space

Ivan Chajda, Helmut Länger (2022)

Mathematica Bohemica

We investigate the lattice 𝐋 ( 𝐕 ) of subspaces of an m -dimensional vector space 𝐕 over a finite field GF ( q ) with a prime power q = p n together with the unary operation of orthogonality. It is well-known that this lattice is modular and that the orthogonality is an antitone involution. The lattice 𝐋 ( 𝐕 ) satisfies the chain condition and we determine the number of covers of its elements, especially the number of its atoms. We characterize when orthogonality is a complementation and hence when 𝐋 ( 𝐕 ) is orthomodular. For...

Currently displaying 61 – 66 of 66

Previous Page 4