Odd parts of tame kernels of dihedral extensions
We give a characterization of the irreducible components of a Weierstrass-type (W-type) analytic (resp. algebraic, Nash) variety in terms of the orbits of a Galois group associated in a natural way to this variety. Since every irreducible variety of pure dimension is (locally) a component of a W-type variety, this description may be applied to any such variety.
2000 Mathematics Subject Classification: 12F12, 15A66.In this article we survey and examine the realizability of p-groups as Galois groups over arbitrary fields. In particular we consider various cohomological criteria that lead to necessary and sufficient conditions for the realizability of such a group as a Galois group, the embedding problem (i.e., realizability over a given subextension), descriptions of such extensions, automatic realizations among p-groups, and related topics.
0. Introduction. Since ℤ is a principal ideal domain, every finitely generated torsion-free ℤ-module has a finite ℤ-basis; in particular, any fractional ideal in a number field has an "integral basis". However, if K is an arbitrary number field the ring of integers, A, of K is a Dedekind domain but not necessarily a principal ideal domain. If L/K is a finite extension of number fields, then the fractional ideals of L are finitely generated and torsion-free (or, equivalently, finitely generated and...
We study the compositum of all degree extensions of a number field in a fixed algebraic closure. We show contains all subextensions of degree less than if and only if . We prove that for there is no bound on the degree of elements required to generate finite subextensions of . Restricting to Galois subextensions, we prove such a bound does not exist under certain conditions on divisors of , but that one can take when is prime. This question was inspired by work of Bombieri and...