The absolute Galois group of a pseudo p-adically closed field.
We show how the size of the Galois groups of iterates of a quadratic polynomial f can be parametrized by certain rational points on the curves Cₙ: y² = fⁿ(x) and their quadratic twists (here fⁿ denotes the nth iterate of f). To that end, we study the arithmetic of such curves over global and finite fields, translating key problems in the arithmetic of polynomial iteration into a geometric framework. This point of view has several dynamical applications. For instance, we establish a maximality theorem...
Let be an algebraically closed field of characteristic . We study obstructions to lifting to characteristic the faithful continuous action of a finite group on . To each such a theorem of Katz and Gabber associates an action of on a smooth projective curve over . We say that the KGB obstruction of vanishes if acts on a smooth projective curve in characteristic in such a way that and have the same genus for all subgroups . We determine for which the KGB obstruction...
Let F/E be a Galois extension of number fields with Galois group . In this paper, we give some expressions for the order of the Sylow p-subgroups of tame kernels of F and some of its subfields containing E, where p is an odd prime. As applications, we give some results about the order of the Sylow p-subgroups when F/E is a Galois extension of number fields with Galois group .