C4-Extensions of Sn as Galois Groups.
Soient un corps de nombres et son groupe des classes. Une extension de à groupe de Galois isomorphe au groupe alterné est dite alternée. Soit une extension cyclique de degré . On calcule la classe de Steinitz, dans , de toute extension alternée contenant . Sous l’hypothèse que le nombre des classes de est impair, on détermine l’ensemble de telles classes et on montre que c’est un sous-groupe de lorsque l’anneau des entiers de est libre sur celui de ou ne divise pas l’ordre...
On donne une caractérisation simple pour l’existence des bases normales pour les extensions modérément ramifiées à groupe de Galois quaternionien d’ordre . La preuve conduit à un algorithme que l’on illustre par un exemple.
On sait que les seuls sous-groupes résolubles transitifs du groupe symétrique ₅ sont isomorphes au groupe de Frobenius , au groupe diédral D₅ et au groupe cyclique C₅. Nous montrerons comment construire des extensions de degré 5 à groupe de Galois résoluble à l’aide de courbes elliptiques. Dans un premier paragraphe nous utiliserons une courbe elliptique ayant un point de 5-torsion rationnel pour les groupes D₅ et C₅. Puis, dans le paragraphe suivant, nous utiliserons une courbe elliptique ayant...