Konstruktion von zusammenhängenden galoisschen Algebren der Charakteristik pk zu vorgegebener Gruppe der Ordnung pf.
A local analogue of the Grothendieck Conjecture is an equivalence between the category of complete discrete valuation fields with finite residue fields of characteristic and the category of absolute Galois groups of fields together with their ramification filtrations. The case of characteristic 0 fields was studied by Mochizuki several years ago. Then the author of this paper proved it by a different method in the case (but with no restrictions on the characteristic of ). In this paper...
We reformulate more explicitly the results of Momose, Ribet and Papier concerning the images of the Galois representations attached to newforms without complex multiplication, restricted to the case of weight and trivial nebentypus. We compute two examples of these newforms, with a single inner twist, and we prove that for every inert prime greater than the image is as large as possible. As a consequence, we prove that the groups for every prime , and for every prime , are Galois groups...