Neuer Beweis des Vorhandenseins complexer Wurzeln in einer algebraischen Gleichung. Von Hermann Kinkelin in Basel
We reformulate more explicitly the results of Momose, Ribet and Papier concerning the images of the Galois representations attached to newforms without complex multiplication, restricted to the case of weight and trivial nebentypus. We compute two examples of these newforms, with a single inner twist, and we prove that for every inert prime greater than the image is as large as possible. As a consequence, we prove that the groups for every prime , and for every prime , are Galois groups...
In this note we study fields with the property that the simple transcendental extension of is isomorphic to some subfield of but not isomorphic to . Such a field provides one type of solution of the Schröder-Bernstein problem for fields.
Dans cet article, nous exploitons la réductibilité d’un polynôme d’une variable pour calculer efficacement l’idéal des relations algébriques entre ses racines.
Dans cet article, nous exploitons la réductibilité d'un polynôme d'une variable pour calculer efficacement l'idéal des relations algébriques entre ses racines.