Displaying 21 – 40 of 92

Showing per page

A note on Frobenius divided modules in mixed characteristics

Pierre Berthelot (2012)

Bulletin de la Société Mathématique de France

If X is a smooth scheme over a perfect field of characteristic p , and if 𝒟 X ( ) is the sheaf of differential operators on X [7], it is well known that giving an action of 𝒟 X ( ) on an 𝒪 X -module is equivalent to giving an infinite sequence of 𝒪 X -modules descending via the iterates of the Frobenius endomorphism of X [5]. We show that this result can be generalized to any infinitesimal deformation f : X S of a smooth morphism in characteristic p , endowed with Frobenius liftings. We also show that it extends to adic...

A note on the kernels of higher derivations

Jiantao Li, Xiankun Du (2013)

Czechoslovak Mathematical Journal

Let k k ' be a field extension. We give relations between the kernels of higher derivations on k [ X ] and k ' [ X ] , where k [ X ] : = k [ x 1 , , x n ] denotes the polynomial ring in n variables over the field k . More precisely, let D = { D n } n = 0 a higher k -derivation on k [ X ] and D ' = { D n ' } n = 0 a higher k ' -derivation on k ' [ X ] such that D m ' ( x i ) = D m ( x i ) for all m 0 and i = 1 , 2 , , n . Then (1) k [ X ] D = k if and only if k ' [ X ] D ' = k ' ; (2) k [ X ] D is a finitely generated k -algebra if and only if k ' [ X ] D ' is a finitely generated k ' -algebra. Furthermore, we also show that the kernel k [ X ] D of a higher derivation D of k [ X ] can be generated by a set...

A Remark on a Paper of Crachiola and Makar-Limanov

Robert Dryło (2011)

Bulletin of the Polish Academy of Sciences. Mathematics

A. Crachiola and L. Makar-Limanov [J. Algebra 284 (2005)] showed the following: if X is an affine curve which is not isomorphic to the affine line ¹ k , then ML(X×Y) = k[X]⊗ ML(Y) for every affine variety Y, where k is an algebraically closed field. In this note we give a simple geometric proof of a more general fact that this property holds for every affine variety X whose set of regular points is not k-uniruled.

Currently displaying 21 – 40 of 92