A Note On A Class Of Noetherian Rings
If is a smooth scheme over a perfect field of characteristic , and if is the sheaf of differential operators on [7], it is well known that giving an action of on an -module is equivalent to giving an infinite sequence of -modules descending via the iterates of the Frobenius endomorphism of [5]. We show that this result can be generalized to any infinitesimal deformation of a smooth morphism in characteristic , endowed with Frobenius liftings. We also show that it extends to adic...
Let be a field extension. We give relations between the kernels of higher derivations on and , where denotes the polynomial ring in variables over the field . More precisely, let a higher -derivation on and a higher -derivation on such that for all and . Then (1) if and only if ; (2) is a finitely generated -algebra if and only if is a finitely generated -algebra. Furthermore, we also show that the kernel of a higher derivation of can be generated by a set...
A. Crachiola and L. Makar-Limanov [J. Algebra 284 (2005)] showed the following: if X is an affine curve which is not isomorphic to the affine line , then ML(X×Y) = k[X]⊗ ML(Y) for every affine variety Y, where k is an algebraically closed field. In this note we give a simple geometric proof of a more general fact that this property holds for every affine variety X whose set of regular points is not k-uniruled.