Polynomes à valeurs entières sur un anneau non analytiquement irréductible.
In this paper we study primary elements in Prüfer lattices and characterize -lattices in terms of Prüfer lattices. Next we study weak ZPI-lattices and characterize almost principal element lattices and principal element lattices in terms of ZPI-lattices.
In this paper, we study multiplication lattice modules. We establish a new multiplication over elements of a multiplication lattice module.With this multiplication, we characterize idempotent element, prime element, weakly prime element and almost prime element in multiplication lattice modules.
In this paper, we use Zorn’s Lemma, multiplicatively closed subsets and saturated closed subsets for the following two topics: (i) The existence of prime submodules in some cases, (ii) The proof that submodules with a certain property satisfy the radical formula. We also give a partial characterization of a submodule of a projective module which satisfies the prime property.
Viene data una condizione sufficiente affinchè un sopra-anello di un anello di pseudo-valutazione (PVR) sia ancora un PVR. Da ciò segue che se è un PVR, allora ogni sopra-anello di è un PVR se (e soltanto se) è quasi-locale per ciascun elemento di . Vari risultati sono dimostrati per un ideale primo di un anello commutativo arbitrario , avente come insieme di zero-divisori. Per esempio, se è un primo «forte» di e contiene un elemento non-zero divisore di , allora è un sopra-anello...
Using quantum sections of filtered rings and the associated Rees rings one can lift the scheme structure on Proj of the associated graded ring to the Proj of the Rees ring. The algebras of interest here are positively filtered rings having a non-commutative regular quadratic algebra for the associated graded ring; these are the so-called gauge algebras obtaining their name from special examples appearing in E. Witten's gauge theories. The paper surveys basic definitions and properties but concentrates...