Displaying 141 – 160 of 650

Showing per page

Correcteurs proportionnels-intégraux généralisés

Michel Fliess, Richard Marquez, Emmanuel Delaleau, Hebertt Sira-Ramírez (2002)

ESAIM: Control, Optimisation and Calculus of Variations

Nous introduisons pour les systèmes linéaires constants les reconstructeurs intégraux et les correcteurs proportionnels-intégraux généralisés, qui permettent d’éviter le terme dérivé du PID classique et, plus généralement, les observateurs asymptotiques usuels. Notre approche, de nature essentiellement algébrique, fait appel à la théorie des modules et au calcul opérationnel de Mikusiński. Plusieurs exemples sont examinés.

Correcteurs proportionnels-intégraux généralisés

Michel Fliess, Richard Marquez, Emmanuel Delaleau, Hebertt Sira–Ramírez (2010)

ESAIM: Control, Optimisation and Calculus of Variations

For constant linear systems we are introducing integral reconstructors and generalized proportional-integral controllers, which permit to bypass the derivative term in the classic PID controllers and more generally the usual asymptotic observers. Our approach, which is mainly of algebraic flavour, is based on the module-theoretic framework for linear systems and on operational calculus in Mikusiński's setting. Several examples are discussed.

C(X) vs. C(X) modulo its socle

F. Azarpanah, O. A. S. Karamzadeh, S. Rahmati (2008)

Colloquium Mathematicae

Let C F ( X ) be the socle of C(X). It is shown that each prime ideal in C ( X ) / C F ( X ) is essential. For each h ∈ C(X), we prove that every prime ideal (resp. z-ideal) of C(X)/(h) is essential if and only if the set Z(h) of zeros of h contains no isolated points (resp. int Z(h) = ∅). It is proved that d i m ( C ( X ) / C F ( X ) ) d i m C ( X ) , where dim C(X) denotes the Goldie dimension of C(X), and the inequality may be strict. We also give an algebraic characterization of compact spaces with at most a countable number of nonisolated points. For each essential...

Cyclically valued rings and formal power series

Gérard Leloup (2007)

Annales mathématiques Blaise Pascal

Rings of formal power series k [ [ C ] ] with exponents in a cyclically ordered group C were defined in [2]. Now, there exists a “valuation” on k [ [ C ] ] : for every σ in k [ [ C ] ] and c in C , we let v ( c , σ ) be the first element of the support of σ which is greater than or equal to c . Structures with such a valuation can be called cyclically valued rings. Others examples of cyclically valued rings are obtained by “twisting” the multiplication in k [ [ C ] ] . We prove that a cyclically valued ring is a subring of a power series ring k [ [ C , θ ] ] with...

De l’application des méthodes valuatives en algèbre différentielle

Guillaume Duval (2008)

Annales de la faculté des sciences de Toulouse Mathématiques

La théorie des valuations née des travaux des géomètres et arithméticiens du XIX ê me siècle, fit une apparition tardive et encore peu connue au XX ê me siècle en algèbre différentielle. Dans cet article, à travers les contributions de nombreux auteurs, nous présentons une synthèse des divers apports de la théorie des valuations à l’étude des équations différentielles. Nous insistons sur le caractère unificateur de la théorie des valuations en illustrant comment elles permettent de mettre en parallèle des...

Currently displaying 141 – 160 of 650