A subspace of and its connexions with the maximal ring of quotients
A domain R is called an absolutely S-domain (for short, AS-domain) if each domain T such that R ⊆ T ⊆ qf(R) is an S-domain. We show that R is an AS-domain if and only if for each valuation overring V of R and each height one prime ideal q of V, the extension R/(q ∩ R) ⊆ V/q is algebraic. A Noetherian domain R is an AS-domain if and only if dim (R) ≤ 1. In Section 2, we study a class of R-subalgebras of R[X] which share many spectral properties with the polynomial ring R[X] and which we call pseudo-polynomial...
In the article appeared in this same journal, vol. 33, 1 (1989) pp. 85-97, some statements in the proof of Example 3.4B got scrambled.
An algorithm is described which computes generators of the kernel of derivations on k[X₁,...,Xₙ] up to a previously given bound. For w-homogeneous derivations it is shown that if the algorithm computes a generating set for the kernel then this set is minimal.
We give an elementary proof of the Briançon-Skoda theorem. The theorem gives a criterionfor when a function belongs to an ideal of the ring of germs of analytic functions at ; more precisely, the ideal membership is obtained if a function associated with and is locally square integrable. If can be generated by elements,it follows in particular that , where denotes the integral closure of an ideal .