Maximal Cohen--Macaulay modules over hypersurface rings.
In this paper, we study the Castelnuovo-Mumford regularity of square-free monomial ideals generated in degree . We define some operations on the clutters associated to such ideals and prove that the regularity is preserved under these operations. We apply these operations to introduce some classes of ideals with linear resolutions and also show that any clutter corresponding to a triangulation of the sphere does not have linear resolution while any proper subclutter of it has a linear resolution....
The hypersurface in with an isolated quasi-homogeneous elliptic singularity of type , has a natural Poisson structure. We show that the family of del Pezzo surfaces of the corresponding type provides a semiuniversal Poisson deformation of that Poisson structure. We also construct a deformation-quantization of the coordinate ring of such a del Pezzo surface. To this end, we first deform the polynomial algebra to a noncommutative algebra with generators and the following 3 relations labelled...
New cases of the multiplicity conjecture are considered.
The dual of a Gorenstein module is called a co-Gorenstein module, defined by Lingguang Li. In this paper, we prove that if R is a local U-ring and M is an Artinian R-module, then M is a co-Gorenstein R-module if and only if the complex is a minimal flat resolution for M when we choose a suitable triangular subset on R̂. Moreover we characterize the co-Gorenstein modules over a local U-ring and Cohen-Macaulay local U-ring.
In this paper, we use a characterization of -modules such that to characterize Cohen-Macaulay rings in terms of various dimensions. This is done by setting to be the local cohomology functor of with respect to the maximal ideal where is the Krull dimension of .
Let , , be ideals of a Noetherian local ring . Let and be finitely generated -modules. We give a generalized version of the Duality Theorem for Cohen-Macaulay rings using local cohomology defined by a pair of ideals. We study the behavior of the endomorphism rings of and , where is the smallest integer such that the local cohomology with respect to a pair of ideals is nonzero and is the Matlis dual functor. We show that if is a -dimensional complete Cohen-Macaulay ring and ...
Let be a local ring and a semidualizing module of . We investigate the behavior of certain classes of generalized Cohen-Macaulay -modules under the Foxby equivalence between the Auslander and Bass classes with respect to . In particular, we show that generalized Cohen-Macaulay -modules are invariant under this equivalence and if is a finitely generated -module in the Auslander class with respect to such that is surjective Buchsbaum, then is also surjective Buchsbaum.