Displaying 241 – 260 of 637

Showing per page

k -torsionless modules with finite Gorenstein dimension

Maryam Salimi, Elham Tavasoli, Siamak Yassemi (2012)

Czechoslovak Mathematical Journal

Let R be a commutative Noetherian ring. It is shown that the finitely generated R -module M with finite Gorenstein dimension is reflexive if and only if M 𝔭 is reflexive for 𝔭 Spec ( R ) with depth ( R 𝔭 ) 1 , and G- dim R 𝔭 ( M 𝔭 ) depth ( R 𝔭 ) - 2 for 𝔭 Spec ( R ) with depth ( R 𝔭 ) 2 . This gives a generalization of Serre and Samuel’s results on reflexive modules over a regular local ring and a generalization of a recent result due to Belshoff. In addition, for n 2 we give a characterization of n -Gorenstein rings via Gorenstein dimension of the dual of modules. Finally it is shown...

Kaplansky classes

Edgar E. Enochs, J. A. López-Ramos (2002)

Rendiconti del Seminario Matematico della Università di Padova

Kronecker modules and reductions of a pair of bilinear forms

Giovanni Falcone, M. Alessandra Vaccaro (2004)

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica

We give a short overview on the subject of canonical reduction of a pair of bilinear forms, each being symmetric or alternating, making use of the classification of pairs of linear mappings between vector spaces given by J. Dieudonné.

Large superdecomposable E(R)-algebras

Laszlo Fuchs, Rüdiger Göbel (2005)

Fundamenta Mathematicae

For many domains R (including all Dedekind domains of characteristic 0 that are not fields or complete discrete valuation domains) we construct arbitrarily large superdecomposable R-algebras A that are at the same time E(R)-algebras. Here "superdecomposable" means that A admits no (directly) indecomposable R-algebra summands ≠ 0 and "E(R)-algebra" refers to the property that every R-endomorphism of the R-module, A is multiplication by an element of, A.

Lattice of ℤ-module

Yuichi Futa, Yasunari Shidama (2016)

Formalized Mathematics

In this article, we formalize the definition of lattice of ℤ-module and its properties in the Mizar system [5].We formally prove that scalar products in lattices are bilinear forms over the field of real numbers ℝ. We also formalize the definitions of positive definite and integral lattices and their properties. Lattice of ℤ-module is necessary for lattice problems, LLL (Lenstra, Lenstra and Lovász) base reduction algorithm [14], and cryptographic systems with lattices [15] and coding theory [9]....

Currently displaying 241 – 260 of 637