Displaying 581 – 600 of 638

Showing per page

Unimodular rows over Laurent polynomial rings

Abdessalem Mnif, Morou Amidou (2022)

Czechoslovak Mathematical Journal

We prove that for any ring 𝐑 of Krull dimension not greater than 1 and n 3 , the group E n ( 𝐑 [ X , X - 1 ] ) acts transitively on Um n ( 𝐑 [ X , X - 1 ] ) . In particular, we obtain that for any ring 𝐑 with Krull dimension not greater than 1, all finitely generated stably free modules over 𝐑 [ X , X - 1 ] are free. All the obtained results are proved constructively.

Unobstructedness and dimension of families of Gorenstein algebras.

Jan O. Kleppe (2007)

Collectanea Mathematica

The goal of this paper is to develop tools to study maximal families of Gorenstein quotients A of a polynomial ring R. We prove a very general theorem on deformations of the homogeneous coordinate ring of a scheme Proj(A) which is defined as the degeneracy locus of a regular section of the dual of some sheaf M of rank r supported on say an arithmetically Cohen-Macaulay subscheme Proj(B) of Proj(R). Under certain conditions (notably; M maximally Cohen-Macaulay and ∧r M ≈ KB(t) a twist of the canonical...

Weak multiplication modules

Abdelmalek Azizi (2003)

Czechoslovak Mathematical Journal

In this paper we characterize weak multiplication modules.

Weak multiplication modules over a pullback of Dedekind domains

S. Ebrahimi Atani, F. Farzalipour (2009)

Colloquium Mathematicae

Let R be the pullback, in the sense of Levy [J. Algebra 71 (1981)], of two local Dedekind domains. We classify all those indecomposable weak multiplication R-modules M with finite-dimensional top, that is, such that M/Rad(R)M is finite-dimensional over R/Rad(R). We also establish a connection between the weak multiplication modules and the pure-injective modules over such domains.

When is each proper overring of R an S(Eidenberg)-domain?

Noômen Jarboui (2002)

Publicacions Matemàtiques

A domain R is called a maximal "non-S" subring of a field L if R ⊂ L, R is not an S-domain and each domain T such that R ⊂ T ⊆ L is an S-domain. We show that maximal "non-S" subrings R of a field L are the integrally closed pseudo-valuation domains satisfying dim(R) = 1, dimv(R) = 2 and L = qf(R).

When is every order ideal a ring ideal?

Melvin Henriksen, Suzanne Larson, Frank A. Smith (1991)

Commentationes Mathematicae Universitatis Carolinae

A lattice-ordered ring is called an OIRI-ring if each of its order ideals is a ring ideal. Generalizing earlier work of Basly and Triki, OIRI-rings are characterized as those f -rings such that / 𝕀 is contained in an f -ring with an identity element that is a strong order unit for some nil l -ideal 𝕀 of . In particular, if P ( ) denotes the set of nilpotent elements of the f -ring , then is an OIRI-ring if and only if / P ( ) is contained in an f -ring with an identity element that is a strong order unit....

Zero-Dimensionality and Serre Rings

Karim, D. (2004)

Serdica Mathematical Journal

2000 Mathematics Subject Classification: Primary 13A99; Secondary 13A15, 13B02, 13E05.This paper deals with zero-dimensionality. We investigate the problem of whether a Serre ring R <X> is expressible as a directed union of Artinian subrings.

Currently displaying 581 – 600 of 638