Displaying 201 – 220 of 557

Showing per page

Grothendieck ring of quantum double of finite groups

Jingcheng Dong (2010)

Czechoslovak Mathematical Journal

Let k G be a group algebra, and D ( k G ) its quantum double. We first prove that the structure of the Grothendieck ring of D ( k G ) can be induced from the Grothendieck ring of centralizers of representatives of conjugate classes of G . As a special case, we then give an application to the group algebra k D n , where k is a field of characteristic 2 and D n is a dihedral group of order 2 n .

Hilbert series of the Grassmannian and k -Narayana numbers

Lukas Braun (2019)

Communications in Mathematics

We compute the Hilbert series of the complex Grassmannian using invariant theoretic methods. This is made possible by showing that the denominator of the q -Hilbert series is a Vandermonde-like determinant. We show that the h -polynomial of the Grassmannian coincides with the k -Narayana polynomial. A simplified formula for the h -polynomial of Schubert varieties is given. Finally, we use a generalized hypergeometric Euler transform to find simplified formulae for the k -Narayana numbers, i.e. the h -polynomial...

Hilbert-Poincaré series of bigraded algebras

Lorenzo Robbiano, Giuseppe Valla (1998)

Bollettino dell'Unione Matematica Italiana

Lo scopo di questo lavoro è la descrizione di alcune nuove tecniche per calcolare serie di Hilbert-Poincaré (HP-serie) di algebre standard, che possono essere viste come sottoalgebre di algebre bigraduate. In particolare mostriamo come calcolare in modo uniforme le HP-serie delle potenze di un idele omogeneo. Mostriamo anche come calcolare le HP-serie di prodotti di Segre e di alcune algebre di Blow-up, che sono di interesse in Geometria Algebrica. Per alcune classi siamo in grado di descrivere...

Currently displaying 201 – 220 of 557