The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Page 1 Next

Displaying 1 – 20 of 116

Showing per page

On a non-vanishing Ext

Laszlo Fuchs, Saharon Shelah (2003)

Rendiconti del Seminario Matematico della Università di Padova

On Bhargava rings

Mohamed Mahmoud Chems-Eddin, Omar Ouzzaouit, Ali Tamoussit (2023)

Mathematica Bohemica

Let D be an integral domain with the quotient field K , X an indeterminate over K and x an element of D . The Bhargava ring over D at x is defined to be 𝔹 x ( D ) : = { f K [ X ] : for all a D , f ( x X + a ) D [ X ] } . In fact, 𝔹 x ( D ) is a subring of the ring of integer-valued polynomials over D . In this paper, we aim to investigate the behavior of 𝔹 x ( D ) under localization. In particular, we prove that 𝔹 x ( D ) behaves well under localization at prime ideals of D , when D is a locally finite intersection of localizations. We also attempt a classification of integral domains D ...

On commutative rings whose prime ideals are direct sums of cyclics

M. Behboodi, A. Moradzadeh-Dehkordi (2012)

Archivum Mathematicum

In this paper we study commutative rings R whose prime ideals are direct sums of cyclic modules. In the case R is a finite direct product of commutative local rings, the structure of such rings is completely described. In particular, it is shown that for a local ring ( R , ) , the following statements are equivalent: (1) Every prime ideal of R is a direct sum of cyclic R -modules; (2) = λ Λ R w λ where Λ is an index set and R / Ann ( w λ ) is a principal ideal ring for each λ Λ ; (3) Every prime ideal of R is a direct sum of at most...

Currently displaying 1 – 20 of 116

Page 1 Next