-поля
A weak basis of a module is a generating set of the module minimal with respect to inclusion. A module is said to be regularly weakly based provided that each of its generating sets contains a weak basis. We study (1) rings over which all modules are regularly weakly based, refining results of Nashier and Nichols, and (2) regularly weakly based modules over Dedekind domains.
We study the construction of new multiplication modules relative to a torsion theory . As a consequence, -finitely generated modules over a Dedekind domain are completely determined. We relate the relative multiplication modules to the distributive ones.
We show an explicit relation between the Chow form and the Grothendieck residue; and we clarify the role that the residue can play in the intersection theory besides its role in the division problem.