Page 1

Displaying 1 – 14 of 14

Showing per page

Newton and Schinzel sequences in quadratic fields

David Adam, Paul-Jean Cahen (2010)

Actes des rencontres du CIRM

We give the maximal length of a Newton or a Schinzel sequence in a quadratic extension of a global field. In the case of a number field, the maximal length of a Schinzel sequence is 1, except in seven particular cases, and the Newton sequences are also finite, except for at most finitely many cases, all real. We give the maximal length of these sequences in the special cases. We have similar results in the case of a quadratic extension of a function field 𝔽 q ( T ) , taking in account that the ring of integers...

Note sur un article de Sharif et Woodcock

Jean-Paul Allouche (1989)

Journal de théorie des nombres de Bordeaux

H. Sharif et C. Woodcock donnent dans [26] une caractérisation des séries formelles à coefficients dans un corps K de caractéristique non nulle et algébriques sur K ( X ) ; ils en déduisent simplement l’algébricité du produit de Hadamard ou des diagonales de séries algébriques. (Ces résultats ont aussi été obtenus par T. Harase [14]). Nous donnons ici une démonstration légèrement différente de leur théorème et montrons comment on peut en déduire une généralisation intéressante de la notion de p k -substitution...

Notes on generalizations of Bézout rings

Haitham El Alaoui, Hakima Mouanis (2021)

Commentationes Mathematicae Universitatis Carolinae

In this paper, we give new characterizations of the P - 2 -Bézout property of trivial ring extensions. Also, we investigate the transfer of this property to homomorphic images and to finite direct products. Our results generate original examples which enrich the current literature with new examples of non- 2 -Bézout P - 2 -Bézout rings and examples of non- P -Bézout P - 2 -Bézout rings.

Currently displaying 1 – 14 of 14

Page 1