Displaying 361 – 380 of 480

Showing per page

Stanley decompositions and polarization

Sarfraz Ahmad (2011)

Czechoslovak Mathematical Journal

We define nice partitions of the multicomplex associated with a Stanley ideal. As the main result we show that if the monomial ideal I is a CM Stanley ideal, then I p is a Stanley ideal as well, where I p is the polarization of I .

Stanley depth of monomial ideals with small number of generators

Mircea Cimpoeaş (2009)

Open Mathematics

For a monomial ideal I ⊂ S = K[x 1...,x n], we show that sdepth(S/I) ≥ n − g(I), where g(I) is the number of the minimal monomial generators of I. If I =νI′, where ν ∈ S is a monomial, then we see that sdepth(S/I) = sdepth(S/I′). We prove that if I is a monomial ideal I ⊂ S minimally generated by three monomials, then I and S/I satisfy the Stanley conjecture. Given a saturated monomial ideal I ⊂ K[x 1,x 2,x 3] we show that sdepth(I) = 2. As a consequence, sdepth(I) ≥ sdepth(K[x 1,x 2,x 3]//I) +1...

Sur les idéaux jacobiens des courbes planes

Jean-Pierre Henry (1977)

Annales de l'institut Fourier

Le ( n + 1 ) ème idéal jacobien itéré d’une courbe complexe algébroïde plane a même clôture intégrale que l’idéal jacobien d’un élément général du n ième idéal jacobien itéré. Ce résultat ramène pour les idéaux ci-dessus les calculs de multiplicité à des calculs de longueur.

Currently displaying 361 – 380 of 480