Page 1

Displaying 1 – 9 of 9

Showing per page

On the genus of reducible surfaces and degenerations of surfaces

Alberto Calabri, Ciro Ciliberto, Flaminio Flamini, Rick Miranda (2007)

Annales de l’institut Fourier

We deal with a reducible projective surface X with so-called Zappatic singularities, which are a generalization of normal crossings. First we compute the ω -genus p ω ( X ) of X , i.e. the dimension of the vector space of global sections of the dualizing sheaf ω X . Then we prove that, when X is smoothable, i.e. when X is the central fibre of a flat family π : 𝒳 Δ parametrized by a disc, with smooth general fibre, then the ω -genus of the fibres of π is constant.

On the uniqueness of the quasihomogeneity

Piotr Jaworski (1999)

Banach Center Publications

The aim of this paper is to show that the quasihomogeneity of a quasihomogeneous germ with an isolated singularity uniquely extends to the base of its analytic miniversal deformation.

On vanishing inflection points of plane curves

Mauricio Garay (2002)

Annales de l’institut Fourier

We study the local behaviour of inflection points of families of plane curves in the projective plane. We develop normal forms and versal deformation concepts for holomorphic function germs f : ( 2 , 0 ) ( , 0 ) which take into account the inflection points of the fibres of f . We give a classification of such function- germs which is a projective analog of Arnold’s A,D,E classification. We compute the versal deformation with respect to inflections of Morse function-germs.

Currently displaying 1 – 9 of 9

Page 1