Page 1

Displaying 1 – 3 of 3

Showing per page

Comparison theorems for Gromov–Witten invariants of smooth pairs and of degenerations

Dan Abramovich, Steffen Marcus, Jonathan Wise (2014)

Annales de l’institut Fourier

We consider four approaches to relative Gromov–Witten theory and Gromov–Witten theory of degenerations: J. Li’s original approach, B. Kim’s logarithmic expansions, Abramovich–Fantechi’s orbifold expansions, and a logarithmic theory without expansions due to Gross–Siebert and Abramovich–Chen. We exhibit morphisms relating these moduli spaces and prove that their virtual fundamental classes are compatible by pushforward through these morphisms. This implies that the Gromov–Witten invariants associated...

Conjecture de Bloch et nombres de Milnor

Fabrice Orgogozo (2003)

Annales de l’institut Fourier

Nous déduisons de la formule du conducteur, conjecturée par S. Bloch, celle de P. Deligne exprimant, dans le cas d'une singularité isolée, la dimension totale des cycles évanescents en fonction du nombre de Milnor. En particulier, la formule de Deligne est établie en dimension relative un; en appendice, on généralise cet énoncé au cas d'un lieu singulier propre.

Courbes rationnelles sur les variétés homogènes

Nicolas Perrin (2002)

Annales de l’institut Fourier

Soit X une variété homogène sous un groupe G . Nous étudions les orbites maximales de X sous l’action d’un parabolique de G . Nous les décomposons en fibrations affines et projectives. Cette description permet de montrer que le schéma de Hilbert des courbes rationnelles lisses de classe fixée est non vide et irréductible.

Currently displaying 1 – 3 of 3

Page 1