The cohomology rings of moduli stacks of principal bundles over curves.
Heinloth, Jochen, Schmitt, Alexander H.W. (2010)
Documenta Mathematica
M. Roczen (1982)
Banach Center Publications
Stephen S. Shatz (1977)
Compositio Mathematica
Serge Lang (1971)
Inventiones mathematicae
Knud Lonsted (1976)
Mathematische Annalen
Kieran G. O'Grady (1993)
Inventiones mathematicae
D. Eisenbud, J. Harris (1987)
Inventiones mathematicae
Radu Laza (2016)
Journal of the European Mathematical Society
Inspired by the ideas of the minimal model program, Shepherd-Barron, Kollár, and Alexeev have constructed a geometric compactification for the moduli space of surfaces of log general type. In this paper, we discuss one of the simplest examples that fits into this framework: the case of pairs consisting of a degree two surface and an ample divisor . Specifically, we construct and describe explicitly a geometric compactification for the moduli of degree two pairs. This compactification...
Kai A. Behrend (1993)
Inventiones mathematicae
Biswas, Indranil, Hoffmann, Norbert (2010)
Documenta Mathematica
Yves Laszlo, Christoph Sorger (1997)
Annales scientifiques de l'École Normale Supérieure
C. Peters (1975)
Mathematische Annalen
Valery Vedernikov (1986)
Mathematische Annalen
Rick Miranda (1981)
Mathematische Annalen
G. Trautmann, Rosa María Miró-Roig (1994)
Mathematische Zeitschrift
Kok Onn Ng (1995)
Manuscripta mathematica
Miles Reid (1987)
Mathematische Annalen
Bjorn Poonen (2008)
Journal of the European Mathematical Society
The moduli space of rank- commutative algebras equipped with an ordered basis is an affine scheme of finite type over , with geometrically connected fibers. It is smooth if and only if . It is reducible if (and the converse holds, at least if we remove the fibers above and ). The relative dimension of is . The subscheme parameterizing étale algebras is isomorphic to , which is of dimension only . For , there exist algebras that are not limits of étale algebras. The dimension calculations...
Rosa M. Miro-Roig (1993)
Manuscripta mathematica
Mark L. Green (1985)
Compositio Mathematica