Technique de descente et théorèmes d'existence en géométrie algébriques. II. Le théorème d'existence en théorie formelle des modules
We give an algebraic approach to the study of Hitchin pairs and prove the tensor product theorem for Higgs semistable Hitchin pairs over smooth projective curves defined over algebraically closed fields of characteristic zero and characteristic , with satisfying some natural bounds. We also prove the corresponding theorem for polystable Hitchin pairs.
Inspired by the ideas of the minimal model program, Shepherd-Barron, Kollár, and Alexeev have constructed a geometric compactification for the moduli space of surfaces of log general type. In this paper, we discuss one of the simplest examples that fits into this framework: the case of pairs consisting of a degree two surface and an ample divisor . Specifically, we construct and describe explicitly a geometric compactification for the moduli of degree two pairs. This compactification...