Stable bundles and algebraically completely integrable systems
The subject of this article is the notion of -spin structure: a line bundle whose th power is isomorphic to the canonical bundle. Over the moduli functor of smooth genus- curves, -spin structures form a finite torsor under the group of -torsion line bundles. Over the moduli functor of stable curves, -spin structures form an étale stack, but both the finiteness and the torsor structure are lost.In the present work, we show how this bad picture can be definitely improved just by placing...
Dans cet article, nous étudions le schéma de Hilbert des courbes gauches (de pure dimension 1 et sans points immergés) de degré et genre , qui est le plus grand genre pour lequel l’étude de est non triviale. Nous commençons par donner, pour chaque valeur de , tous les modules de Rao des courbes de et ses sous-schémas à cohomologie constante, et nous décrivons la courbe générique de chacun de ces sous-schémas. Nous déduisons ensuite les composantes irréductibles et la dimension de . Enfin,...
In [11], A. Givental introduced a group action on the space of Gromov–Witten potentials and proved its transitivity on the semi-simple potentials. In [24, 25], Y.-P. Lee showed, modulo certain results announced by C. Teleman, that this action respects the tautological relations in the cohomology ring of the moduli space of stable pointed curves. Here we give a simpler proof of this result. In particular, it implies that in any semi-simple Gromov–Witten theory where arbitrary correlators can be...
The paper studies fiber type morphisms between moduli spaces of pointed rational curves. Via Kapranov’s description we are able to prove that the only such morphisms are forgetful maps. This allows us to show that the automorphism group of is the permutation group on elements as soon as .
In this paper we compute the integral Chow ring of the stack of smooth uniform cyclic covers of the projective line and we give explicit generators.