Real projective structures on Riemann surfaces
Le but de cet article est de formuler de façon géométrique l’idée maîtresse de Voros dans Ann. Inst. Henri Poincaré, Sect. A 39, 211-238 (1983) : les solutions de l’équation de Schrödinger stationnaire à une dimension, à potentiel polynomial, sont codées exactement dans le domaine complexe par leurs développements BKW (développements formels, divergents, en puissances de la constante de Planck), d’une façon entièrement lisible dans la géométrie des périodes de la forme (=variable de position,...
In this paper we classify all Riemann surfaces having a large abelian group of automorphisms, that is having an abelian group of automorphism of order strictly bigger then 4(g-1), where g denotes as usual the genus of the Riemann surface.
This note gives a survey of some recent results on the stable reduction of covers of the projective line branched at three points.
We construct a global system of real analytic coordinates on the real Teichmüller space of a compact real algebraic curve X, using so-called strict uniformization of the real algebraic curve X. A global coordinate system is then obtained via real quasiconformal deformations of the Kleinian subgroup of PGL2(R) obtained as a group of covering transformations of a strict uniformization of X.