Fonctions theta du second ordre sur la jacobienne d'une courbe lisse.
We propose a solution to the hyperelliptic Schottky problem, based on the use of Jacobian Nullwerte and symmetric models for hyperelliptic curves. Both ingredients are interesting on its own, since the first provide period matrices which can be geometrically described, and the second have remarkable arithmetic properties.
We construct families of quartic and cubic hypersurfaces through a canonical curve, which are parametrized by an open subset in a grassmannian and a Flag variety respectively. Using G. Kempf’s cohomological obstruction theory, we show that these families cut out the canonical curve and that the quartics are birational (via a blowing-up of a linear subspace) to quadric bundles over the projective plane, whose Steinerian curve equals the canonical curve
Sia una curva irriducibile nodale di genere aritmetico . In queste note vogliamo mostrare come il sistema lineare delle quadriche, contenenti un opportuno modello proiettivo della curva, permette di descrivere i fibrati vettoriali semistabili, di rango , su .
We describe a method of calculation of all physical algebraic-geometrical solutions of KP-equations.