Displaying 41 – 60 of 64

Showing per page

Singularities of 2 Θ -divisors in the jacobian

Christian Pauly, Emma Previato (2001)

Bulletin de la Société Mathématique de France

We consider the linear system | 2 Θ 0 | of second order theta functions over the Jacobian J C of a non-hyperelliptic curve C . A result by J.Fay says that a divisor D | 2 Θ 0 | contains the origin 𝒪 J C with multiplicity 4 if and only if D contains the surface C - C = { 𝒪 ( p - q ) p , q C } J C . In this paper we generalize Fay’s result and some previous work by R.C.Gunning. More precisely, we describe the relationship between divisors containing 𝒪 with multiplicity 6 , divisors containing the fourfold C 2 - C 2 = { 𝒪 ( p + q - r - s ) p , q , r , s C } , and divisors singular along C - C , using the third exterior...

The fibre of the Prym map in genus four

Laura Hidalgo-Solís, Sevin Recillas-Pishmish (1999)

Bollettino dell'Unione Matematica Italiana

In questa nota si dà una descrizione della fibra della mappa di Prym in genere 4. Se J X è la Jacobiana di una curva di genere 3, allora la fibra della mappa di Prym in J X si ottiene dalla varietà di Kummer K X mediante due scoppiamenti: σ 1 : K X 0 K X che è lo scoppiamento di K X nell'origine e σ 2 : K X 0 ~ K X 0 che è lo scoppiamento lungo una curva isomorfa a X .

The small Schottky-Jung locus in positive characteristics different from two

Fabrizio Andreatta (2003)

Annales de l’institut Fourier

We prove that the locus of Jacobians is an irreducible component of the small Schottky locus in any characteristic different from 2 . The proof follows an idea of B. van Geemen in characteristic 0 and relies on a detailed analysis at the boundary of the q - expansion of the Schottky-Jung relations. We obtain algebraically such relations using Mumford’s theory of 2 -adic theta functions. We show how the uniformization theory of semiabelian schemes, as developed by D. Mumford, C.-L. Chai and G. Faltings,...

Currently displaying 41 – 60 of 64