Self-duality equation: Monodromy matrices and algebraic curves
We consider the linear system of second order theta functions over the Jacobian of a non-hyperelliptic curve . A result by J.Fay says that a divisor contains the origin with multiplicity if and only if contains the surface . In this paper we generalize Fay’s result and some previous work by R.C.Gunning. More precisely, we describe the relationship between divisors containing with multiplicity , divisors containing the fourfold , and divisors singular along , using the third exterior...
In questa nota si dà una descrizione della fibra della mappa di Prym in genere 4. Se è la Jacobiana di una curva di genere 3, allora la fibra della mappa di Prym in si ottiene dalla varietà di Kummer mediante due scoppiamenti: che è lo scoppiamento di nell'origine e che è lo scoppiamento lungo una curva isomorfa a .
We prove that the locus of Jacobians is an irreducible component of the small Schottky locus in any characteristic different from . The proof follows an idea of B. van Geemen in characteristic and relies on a detailed analysis at the boundary of the - expansion of the Schottky-Jung relations. We obtain algebraically such relations using Mumford’s theory of -adic theta functions. We show how the uniformization theory of semiabelian schemes, as developed by D. Mumford, C.-L. Chai and G. Faltings,...