Modular invariant and good reduction of elliptic curves.
We study the family of elliptic curves y² = x(x-a²)(x-b²) parametrized by Pythagorean triples (a,b,c). We prove that for a generic triple the lower bound of the rank of the Mordell-Weil group over ℚ is 1, and for some explicitly given infinite family the rank is 2. To each family we attach an elliptic surface fibered over the projective line. We show that the lower bounds for the rank are optimal, in the sense that for each generic fiber of such an elliptic surface its corresponding Mordell-Weil...
The hypersurface in with an isolated quasi-homogeneous elliptic singularity of type , has a natural Poisson structure. We show that the family of del Pezzo surfaces of the corresponding type provides a semiuniversal Poisson deformation of that Poisson structure. We also construct a deformation-quantization of the coordinate ring of such a del Pezzo surface. To this end, we first deform the polynomial algebra to a noncommutative algebra with generators and the following 3 relations labelled...