Displaying 241 – 260 of 2340

Showing per page

Basis of homology adapted to the trigonal automorphism of a Riemann surface.

Helena B. Campos (2007)

RACSAM

A closed (compact without boundary) Riemann surface S of genus g is said to be trigonal if there is a three sheeted covering (a trigonal morphism) from S to the Riemann sphere, ƒ : S →Ĉ. If there is an automorphism of period three, φ, on S permuting the sheets of the covering, we shall call S cyclic trigonal and will be called trigonal automorphism. In this paper we determine the intersection matrix on the first homology group of a cyclic trigonal Riemann surface on an adapted basis B to the trigonal...

Bernstein classes

N. Roytwarf, Yosef Yomdin (1997)

Annales de l'institut Fourier

One of the classical Bernstein inequalities compares the maxima of a polynomial of a given degree on the interval [-1,1] and on the ellipse in the complex plane with the focuses -1, 1 and the semiaxes R . We prove a similar inequality for a branch of an algebraic function of a given degree on the maximal disk of its regularity, with the explicitly given constant, depending on the degree only. In particular, this improves a recent inequality of Fefferman and Narasimhan and answers one of their questions....

Bicyclotomic polynomials and impossible intersections

David Masser, Umberto Zannier (2013)

Journal de Théorie des Nombres de Bordeaux

In a recent paper we proved that there are at most finitely many complex numbers t 0 , 1 such that the points ( 2 , 2 ( 2 - t ) ) and ( 3 , 6 ( 3 - t ) ) are both torsion on the Legendre elliptic curve defined by y 2 = x ( x - 1 ) ( x - t ) . In a sequel we gave a generalization to any two points with coordinates algebraic over the field Q ( t ) and even over C ( t ) . Here we reconsider the special case ( u , u ( u - 1 ) ( u - t ) ) and ( v , v ( v - 1 ) ( v - t ) ) with complex numbers u and v .

Biliaisons élémentaires en codimension 2

Mireille Martin-Deschamps (2006)

Annales de la faculté des sciences de Toulouse Mathématiques

Un théorème de Strano montre que si une courbe gauche localement Cohen-Macaulay n’est pas minimale dans sa classe de biliaison, elle admet une biliaison élémentaire strictement décroissante. R. Hartshorne a récemment donné une nouvelle preuve de ce résultat en le plaçant dans un contexte plus général. Dans cet article on apporte une précision, en utilisant les techniques introduites par Hartshorne : on montre que si un sous-schéma de codimension 2 localement Cohen-Macaulay de N n’est pas minimal...

Currently displaying 241 – 260 of 2340