Displaying 41 – 60 of 63

Showing per page

Mordell-Weil ranks of families of elliptic curves associated to Pythagorean triples

Bartosz Naskręcki (2013)

Acta Arithmetica

We study the family of elliptic curves y² = x(x-a²)(x-b²) parametrized by Pythagorean triples (a,b,c). We prove that for a generic triple the lower bound of the rank of the Mordell-Weil group over ℚ is 1, and for some explicitly given infinite family the rank is 2. To each family we attach an elliptic surface fibered over the projective line. We show that the lower bounds for the rank are optimal, in the sense that for each generic fiber of such an elliptic surface its corresponding Mordell-Weil...

Multi-Harnack smoothings of real plane branches

Pedro Daniel González Pérez, Jean-Jacques Risler (2010)

Annales scientifiques de l'École Normale Supérieure

Let Δ 𝐑 2 be an integral convex polygon. G. Mikhalkin introduced the notion ofHarnack curves, a class of real algebraic curves, defined by polynomials supported on Δ and contained in the corresponding toric surface. He proved their existence, viaViro’s patchworkingmethod, and that the topological type of their real parts is unique (and determined by Δ ). This paper is concerned with the description of the analogous statement in the case of a smoothing of a real plane branch ( C , 0 ) . We introduce the class...

Multiple Bernoulli series, an Euler-MacLaurin formula, and Wall crossings

Arzu Boysal, Michèle Vergne (2012)

Annales de l’institut Fourier

We study multiple Bernoulli series associated to a sequence of vectors generating a lattice in a vector space. The associated multiple Bernoulli series is a periodic and locally polynomial function, and we give an explicit formula (called wall crossing formula) comparing the polynomial densities in two adjacent domains of polynomiality separated by a hyperplane. We also present a formula in the spirit of Euler-MacLaurin formula. Finally, we give a decomposition formula for the Bernoulli series describing...

Multiple prime covers of the riemann sphere

Aaron Wootton (2005)

Open Mathematics

A compact Riemann surface X of genus g≥2 which admits a cyclic group of automorphisms C q of prime order q such that X/C q has genus 0 is called a cyclic q-gonal surface. If a q-gonal surface X is also p-gonal for some prime p≠q, then X is called a multiple prime surface. In this paper, we classify all multiple prime surfaces. A consequence of this classification is a proof of the fact that a cyclic q-gonal surface can be cyclic p-gonal for at most one other prime p.

Multiple zeta values and periods of moduli spaces 𝔐 ¯ 0 , n

Francis C. S. Brown (2009)

Annales scientifiques de l'École Normale Supérieure

We prove a conjecture due to Goncharov and Manin which states that the periods of the moduli spaces 𝔐 0 , n of Riemann spheres with n marked points are multiple zeta values. We do this by introducing a differential algebra of multiple polylogarithms on 𝔐 0 , n and proving that it is closed under the operation of taking primitives. The main idea is to apply a version of Stokes’ formula iteratively to reduce each period integral to multiple zeta values. We also give a geometric interpretation of the double shuffle...

Currently displaying 41 – 60 of 63