Displaying 1021 – 1040 of 2340

Showing per page

Nodal curves in 3 ( )

Edoardo Ballico, Paolo Oliverio (1984)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

Siano d , g , t interi con 0 t g ; se esiste in 3 ( ) una curva connessa, non singolare di grado d e genere g , allora esiste in 3 ( ) una curva irriducibile di grado d , genere aritmetico g e t nodi.

Nodal deformations of singularities.

Jorge A. González-Ramírez (2002)

Revista Matemática Complutense

In this note we study deformations of a plane curve singularity (C,P) toδ(C,P) nodes. We see that for some types of singularities the method of A'Campo can be carried on using parametric equations. For such singularities we prove that deformations to δ nodes can be made within the space of curves of the same degree.

Nœuds algébriques

Lê Dũng Tráng (1973)

Annales de l'institut Fourier

Nous donnons un résumé des principaux résultats récents obtenus sur les nœuds algébriques.

Noncommutative del Pezzo surfaces and Calabi-Yau algebras

Pavel Etingof, Victor Ginzburg (2010)

Journal of the European Mathematical Society

The hypersurface in 3 with an isolated quasi-homogeneous elliptic singularity of type E ˜ r , r = 6 , 7 , 8 , has a natural Poisson structure. We show that the family of del Pezzo surfaces of the corresponding type E r provides a semiuniversal Poisson deformation of that Poisson structure. We also construct a deformation-quantization of the coordinate ring of such a del Pezzo surface. To this end, we first deform the polynomial algebra [ x 1 , x 2 , x 3 ] to a noncommutative algebra with generators x 1 , x 2 , x 3 and the following 3 relations labelled...

Non-obstructed subcanonical space curves.

Rosa M. Miró-Roig (1992)

Publicacions Matemàtiques

Recall that a closed subscheme X ⊂ P is non-obstructed if the corresponding point x of the Hilbert scheme Hilbp(t)n is non-singular. A geometric characterization of non-obstructedness is not known even for smooth space curves. The goal of this work is to prove that subcanonical k-Buchsbaum, k ≤ 2, space curves are non-obstructed. As a main tool we use Serre's correspondence between subcanonical curves and vector bundles.

Currently displaying 1021 – 1040 of 2340