Displaying 1061 – 1080 of 2340

Showing per page

Number of singular points of an annulus in 2

Maciej Borodzik, Henryk Zołądek (2011)

Annales de l’institut Fourier

Using BMY inequality and a Milnor number bound we prove that any algebraic annulus * in 2 with no self-intersections can have at most three cuspidal singularities.

Obstructions to deforming curves on a 3 -fold, II: Deformations of degenerate curves on a del Pezzo 3 -fold

Hirokazu Nasu (2010)

Annales de l’institut Fourier

We study the Hilbert scheme Hilb s c V of smooth connected curves on a smooth del Pezzo 3 -fold V . We prove that any degenerate curve C , i.e. any curve C contained in a smooth hyperplane section S of V , does not deform to a non-degenerate curve if the following two conditions are satisfied: (i) χ ( V , C ( S ) ) 1 and (ii) for every line on S such that C = , the normal bundle N / V is trivial (i.e.  N / V 𝒪 1 2 ). As a consequence, we prove an analogue (for Hilb s c V ) of a conjecture of J. O. Kleppe, which is concerned with non-reduced components...

On a general difference Galois theory I

Shuji Morikawa (2009)

Annales de l’institut Fourier

We know well difference Picard-Vessiot theory, Galois theory of linear difference equations. We propose a general Galois theory of difference equations that generalizes Picard-Vessiot theory. For every difference field extension of characteristic 0 , we attach its Galois group, which is a group of coordinate transformation.

Currently displaying 1061 – 1080 of 2340