Displaying 141 – 160 of 170

Showing per page

Critical and ramification points of the modular parametrization of an elliptic curve

Christophe Delaunay (2005)

Journal de Théorie des Nombres de Bordeaux

Let E be an elliptic curve defined over with conductor N and denote by ϕ the modular parametrization: ϕ : X 0 ( N ) E ( ) . In this paper, we are concerned with the critical and ramification points of ϕ . In particular, we explain how we can obtain a more or less experimental study of these points.

Cubic differential forms and the group law on the Jacobian of a real algebraic curve

J. Huisman (2003)

Bollettino dell'Unione Matematica Italiana

In an earlier paper [6], we gave an explicit geometric description of the group law on the neutral component of the set of real points of the Jacobian of a smooth quartic curve. Here, we generalize this description to curves of higher genus. We get a description of the group law on the neutral component of the set of real points of the Jacobian of a smooth curve in terms of cubic differential forms. When applied to canonical curves, one gets an explicit geometric description of this group law by...

Curves in P2(C) with 1-dimensional symmetry.

A. A. du Plessis, Charles Terence Clegg Wall (1999)

Revista Matemática Complutense

In a previous paper we showed that the existence of a 1-parameter symmetry group of a hypersurface X in projective space was equivalent to failure of versality of a certain unfolding. Here we study in detail (reduced) plane curves of degree d ≥ 3, excluding the trivial case of cones. We enumerate all possible group actions -these have to be either semisimple or unipotent- for any degree d. A 2-parameter group can only occur if d = 3. Explicit lists of singularities of the corresponding curves are...

Curves on a double surface.

Scott Nollet, Enrico Schlesinger (2003)

Collectanea Mathematica

Let F be a smooth projective surface contained in a smooth threefold T, and let X be the scheme corresponding to the divisor 2F on T. A locally Cohen-Macaulay curve C included in X gives rise to two effective divisors on F, namely the largest divisor P contained in C intersection F and the curve R residual to C intersection F in C. We show that under suitable hypotheses a general deformation of R and P lifts to a deformation of C on X, and give applications to the study of Hilbert schemes of locally...

Curves on a ruled cubic surface.

John Brevik, Francesco Mordasini (2003)

Collectanea Mathematica

For the general ruled cubic surface S (with a double line) in P3 = P3 sub k, k any algebraically closed field, we find necessary conditions for which curves on S can be the specialization of a flat family of curves on smooth cubics. In particular, no smooth curve of degree > 10 on S is such a specialization.

Curves on a smooth quadric.

S. Giuffrida, R. Maggioni (2003)

Collectanea Mathematica

We associate to every curve on a smooth quadric a polynomial equation that defines it as a divisor; this polynomial is defined through a matrix. In this way we can study several properties of these curves; in particular we can give a geometrical meaning to the rank of the matrix which defines the curve.

Currently displaying 141 – 160 of 170