Some more examples of curves in P3 with stable normal bundle.
We show that the first order structure whose underlying universe is ℂ and whose basic relations are all algebraic subsets of ℂ² does not have quantifier elimination. Since an algebraic subset of ℂ² is either of dimension ≤ 1 or has a complement of dimension ≤ 1, one can restate the former result as a failure of quantifier elimination for planar complex algebraic curves. We then prove that removing the planarity hypothesis suffices to recover quantifier elimination: the structure with the universe...
Motivated by the notion of Seshadri-ampleness introduced in [11], we conjecture that the genus and the degree of a smooth set-theoretic intersection should satisfy a certain inequality. The conjecture is verified for various classes of set-theoretic complete intersections.
For a smooth complex projective variety, the rank of the Néron-Severi group is bounded by the Hodge number . Varieties with have interesting properties, but are rather sparse, particularly in dimension . We discuss in this note a number of examples, in particular those constructed from curves with special Jacobians.
Here we introduce the concept of special effect varieties in higher dimension and we generalize to Pn, n ≥ 3, the two conjectures given in [2] for the planar case. Finally, we propose some examples on the product of projective spaces and we show how these results fit with the ones of Catalisano, Geramita and Gimigliano.
Let be a number field, and suppose is irreducible over . Using algebraic geometry and group theory, we describe conditions under which the -exceptional set of , i.e. the set of for which the specialized polynomial is -reducible, is finite. We give three applications of the methods we develop. First, we show that for any fixed , all but finitely many -specializations of the degree generalized Laguerre polynomial are -irreducible and have Galois group . Second, we study specializations...