The Group of Automorphisms of the Modular Function Field.
We consider the Hilbert scheme of space curves with homogeneous ideal and Rao module . By taking suitable generizations (deformations to a more general curve) of , we simplify the minimal free resolution of by e.g making consecutive free summands (ghost-terms) disappear in a free resolution of . Using this for Buchsbaum curves of diameter one ( for only one ), we establish a one-to-one correspondence between the set of irreducible components of that contain and a set of minimal...
This paper studies space curves of degree and arithmetic genus , with homogeneous ideal and Rao module , whose main results deal with curves which satisfy (e.g. of diameter, ). For such curves we find necessary and sufficient conditions for unobstructedness, and we compute the dimension of the Hilbert scheme, , at under the sufficient conditions. In the diameter one case, the necessary and sufficient conditions coincide, and the unobstructedness of turns out to be equivalent to the...
Let S be a ruled surface in P3 with no multiple generators. Let d and q be nonnegative integers. In this paper we determine which pairs (d,q) correspond to the degree and irregularity of a ruled surface, by considering these surfaces as curves in a smooth quadric hypersurface in P5.
It is known that it is sufficient to consider in the Jacobian Conjecture only polynomial mappings of the form , where are homogeneous polynomials of degree 3 with real coefficients (or ), j = 1,...,n and H’(x) is a nilpotent matrix for each . We give another proof of Yu’s theorem that in the case of non-negative coefficients of H the mapping F is a polynomial automorphism, and we moreover prove that in that case , where . Note that the above inequality is not true when the coefficients of...
The paper contains the formulation of the problem and an almost up-to-date survey of some results in the area.
We study the enumerative geometry of the moduli space of Prym varieties of dimension . Our main result is that the compactication of is of general type as soon as and is different from 15. We achieve this by computing the class of two types of cycles on : one defined in terms of Koszul cohomology of Prym curves, the other defined in terms of Raynaud theta divisors associated to certain vector bundles on curves. We formulate a Prym–Green conjecture on syzygies of Prym-canonical curves....