Density of rational points on elliptic surfaces
We develop a theory of differential equations associated to families of algebraic cycles in higher Chow groups (i.e., motivic cohomology groups). This formalism is related to inhomogenous Picard–Fuchs type differential equations. For a families of K3 surfaces the corresponding non–linear ODE turns out to be similar to Chazy’s equation.
The aim of this paper is to give an explicit extension of classical elliptic integrals to the Hilbert modular case for ℚ (√5). We study a family of Kummer surfaces corresponding to the Humbert surface of invariant 5 with two complex parameters. Our Kummer surface is given by a double covering of the weighted projective space ℙ(1:1:2) branched along a parabola and a quintic curve. The period mapping for our family is given by double integrals of an algebraic function on chambers coming from an arrangement...