Page 1

Displaying 1 – 12 of 12

Showing per page

The arithmetic of certain del Pezzo surfaces and K3 surfaces

Dong Quan Ngoc Nguyen (2012)

Journal de Théorie des Nombres de Bordeaux

We construct del Pezzo surfaces of degree 4 violating the Hasse principle explained by the Brauer-Manin obstruction. Using these del Pezzo surfaces, we show that there are algebraic families of K 3 surfaces violating the Hasse principle explained by the Brauer-Manin obstruction. Various examples are given.

The geometry of the third moment of exponential sums

Florent Jouve (2008)

Journal de Théorie des Nombres de Bordeaux

We give a geometric interpretation (and we deduce an explicit formula) for two types of exponential sums, one of which is the third moment of Kloosterman sums over F q of type K ( ν 2 ; q ) . We establish a connection between the sums considered and the number of F q -rational points on explicit smooth projective surfaces, one of which is a K 3 surface, whereas the other is a smooth cubic surface. As a consequence, we obtain, applying Grothendieck-Lefschetz theory, a generalized formula for the third moment of Kloosterman...

The KSBA compactification for the moduli space of degree two K 3 pairs

Radu Laza (2016)

Journal of the European Mathematical Society

Inspired by the ideas of the minimal model program, Shepherd-Barron, Kollár, and Alexeev have constructed a geometric compactification for the moduli space of surfaces of log general type. In this paper, we discuss one of the simplest examples that fits into this framework: the case of pairs ( X , H ) consisting of a degree two K 3 surface X and an ample divisor H . Specifically, we construct and describe explicitly a geometric compactification P ¯ 2 for the moduli of degree two K 3 pairs. This compactification...

Currently displaying 1 – 12 of 12

Page 1