Descente infinie et hauteur p-adique sur les courbes elliptiques à multiplication complexe.
Nous obtenons une minoration d’une forme linéaire de logarithmes elliptiques de points algébriques d’une courbe elliptique à multiplication complexe définie sur . Cette minoration est optimale (à constante près) en la hauteur de la forme linéaire considérée.
La géométrie d’Arakelov étudie les fibrés vectoriels sur une variété algébrique définie sur les entiers, munis d’une métrique hermitienne lisse sur le fibré holomorphe associé (sur la variété analytique des points complexes de ). Un théorème de “Riemann-Roch arithmétique” calcule le covolume du réseau euclidien des sections globales d’un tel fibré. Dans cette formule, le genre de Todd comporte un terme complémentaire, défini par une série formelle dont les coefficients font intervenir les valeurs...
Nous prouvons un cas particulier de la conjecture suivante e Zilber-Pink, conjecture généralisant celle de Manin-Mumford : soit une courbe incluse dans une variété abélienne sur , qui n’est pas incluse dans une sous-variété de torsion ; l’intersection de avec la réunion de tous les sous-groupes de codimension au moins 2 est finie. Nous démontrons ici le cas où est une puissance d’une variété abélienne C.M. simple. La preuve reprend la stratégie de Rémond (suivant Bombieri-Masser-Zannier)...