Variations on a Theorem of Abel.
Dans la continuité de nos travaux précédents, nous étudions un analogue, pour le modèle de Néron d’une variété abélienne semi-stable sur un corps de nombres, du class-invariant homomorphism introduit par M. J. Taylor, qui nous permet de mesurer la structure galoisienne de certains torseurs.
Quite recently, Alexeev and Nakamura proved that if Y is a stable semi-Abelic variety (SSAV) of dimension g equipped with the ample line bundle OY(1), which deforms to a principally polarized Abelian variety, then OY(n) is very ample as soon as n ≥ 2g + 1, that is n ≥ 5 in the case of surfaces. Here it is proved, via elementary methods of projective geometry, that in the case of surfaces this bound can be improved to n ≥ 3.
This paper is devoted to the study of the volcanoes of ℓ-isogenies of elliptic curves over a finite field, focusing on their height as well as on the location of curves across its different levels. The core of the paper lies on the relationship between the ℓ-Sylow subgroup of an elliptic curve and the level of the volcano where it is placed. The particular case ℓ = 3 is studied in detail, giving an algorithm to determine the volcano of 3-isogenies of a given elliptic curve. Experimental results...