Page 1

Displaying 1 – 13 of 13

Showing per page

Nonabelian Hodge theory in characteristic p

A. Ogus, V. Vologodsky (2007)

Publications Mathématiques de l'IHÉS

Given a scheme in characteristic p together with a lifting modulo p2, we construct a functor from a category of suitably nilpotent modules with connection to the category of Higgs modules. We use this functor to generalize the decomposition theorem of Deligne-Illusie to the case of de Rham cohomology with coefficients.

Non-supersingular hyperelliptic jacobians

Yuri G. Zarhin (2004)

Bulletin de la Société Mathématique de France

Let K be a field of odd characteristic p , let f ( x ) be an irreducible separable polynomial of degree n 5 with big Galois group (the symmetric group or the alternating group). Let C be the hyperelliptic curve y 2 = f ( x ) and J ( C ) its jacobian. We prove that J ( C ) does not have nontrivial endomorphisms over an algebraic closure of K if either n 7 or p 3 .

Non-trivial Ш in the Jacobian of an infinite family of curves of genus 2

Anna Arnth-Jensen, E. Victor Flynn (2009)

Journal de Théorie des Nombres de Bordeaux

We give an infinite family of curves of genus 2 whose Jacobians have non-trivial members of the Tate-Shafarevich group for descent via Richelot isogeny. We prove this by performing a descent via Richelot isogeny and a complete 2-descent on the isogenous Jacobian. We also give an explicit model of an associated family of surfaces which violate the Hasse principle.

Currently displaying 1 – 13 of 13

Page 1