Class Groups of Localities of Rings of Invariants of Reductive Algebraic Groups.
Consider a rational representation of an algebraic torus on a vector space . Suppose that is a homogeneous minimal generating set for the ring of invariants, . New upper bounds are derived for the number . These bounds are expressed in terms of the volume of the convex hull of the weights of and other geometric data. Also an algorithm is described for constructing an (essentially unique) partial set of generators consisting of monomials and such that is integral over .
Using Deodhar’s decomposition of a double Schubert cell, we study the regular representations of finite groups of Lie type arising in the cohomology of Deligne-Lusztig varieties associated to tori. We deduce that the Deligne-Lusztig restriction of a Gelfand-Graev module is a shifted Gelfand-Graev module.
We describe a relation between the invariants of ordered points in projective -space and of points contained in a union of two linear subspaces. This yields an attaching map for GIT quotients parameterizing point configurations in these spaces, and we show that it respects the Segre product of the natural GIT polarizations. Associated to a configuration supported on a rational normal curve is a cyclic cover, and we show that if the branch points are weighted by the GIT linearization and the rational...