Displaying 21 – 40 of 144

Showing per page

Constructive invariant theory for tori

David Wehlau (1993)

Annales de l'institut Fourier

Consider a rational representation of an algebraic torus T on a vector space V . Suppose that { f 1 , , f p } is a homogeneous minimal generating set for the ring of invariants, k [ V ] T . New upper bounds are derived for the number N V , T : = max { deg f i } . These bounds are expressed in terms of the volume of the convex hull of the weights of V and other geometric data. Also an algorithm is described for constructing an (essentially unique) partial set of generators { f 1 , , f s } consisting of monomials and such that k [ V ] T is integral over k [ f 1 , , f s ] .

Deligne-Lusztig restriction of a Gelfand-Graev module

Olivier Dudas (2009)

Annales scientifiques de l'École Normale Supérieure

Using Deodhar’s decomposition of a double Schubert cell, we study the regular representations of finite groups of Lie type arising in the cohomology of Deligne-Lusztig varieties associated to tori. We deduce that the Deligne-Lusztig restriction of a Gelfand-Graev module is a shifted Gelfand-Graev module.

Factorization of point configurations, cyclic covers, and conformal blocks

Michele Bolognesi, Noah Giansiracusa (2015)

Journal of the European Mathematical Society

We describe a relation between the invariants of n ordered points in projective d -space and of points contained in a union of two linear subspaces. This yields an attaching map for GIT quotients parameterizing point configurations in these spaces, and we show that it respects the Segre product of the natural GIT polarizations. Associated to a configuration supported on a rational normal curve is a cyclic cover, and we show that if the branch points are weighted by the GIT linearization and the rational...

Currently displaying 21 – 40 of 144