Displaying 781 – 800 of 884

Showing per page

Transformation de Fourier-Deligne sur les groupes unipotents

Moussa Saibi (1996)

Annales de l'institut Fourier

Dans cet article on étudie la transformation de Fourier-Deligne sur les schémas en groupes commutatifs unipotents connexes définis sur un corps parfait. On rappelle la construction du dual de Serre d’un groupe commutatif unipotent connexe et on définit la notion de paire duale admissible de schémas en groupes commutatifs unipotents connexes sur un corps parfait. On définit alors la transformation de Fourier-Deligne pour ces paires duales et on dégage les propriétés élémentaires de ce foncteur :...

Transience of algebraic varieties in linear groups - applications to generic Zariski density

Richard Aoun (2013)

Annales de l’institut Fourier

We study the transience of algebraic varieties in linear groups. In particular, we show that a “non elementary” random walk in S L 2 ( ) escapes exponentially fast from every proper algebraic subvariety. We also treat the case where the random walk takes place in the real points of a semisimple split algebraic group and show such a result for a wide family of random walks.As an application, we prove that generic subgroups (in some sense) of linear groups are Zariski dense.

Travaux de Zink

William Messing (2005/2006)

Séminaire Bourbaki

The diverse Dieudonné theories have as their common goal the classification of formal groups and p -divisible groups. The most recent theory is Zink’s theory of displays. A display over a ring R is a finitely generated projective module over the ring of Witt vectors, W ( R ) , equipped with additional structures. Zink has shown that using this notion, more concrete than those previously defined, one can obtain a good theory and prove an equivalence theorem in great generality. I will give an overview of...

Troesch complexes and extensions of strict polynomial functors

Antoine Touzé (2012)

Annales scientifiques de l'École Normale Supérieure

We develop a new approach of extension calculus in the category of strict polynomial functors, based on Troesch complexes. We obtain new short elementary proofs of numerous classical Ext -computations as well as new results. In particular, we get a cohomological version of the “fundamental theorems” from classical invariant theory for  G L n for  n big enough (and we give a conjecture for smaller values of  n ). We also study the “twisting spectral sequence” E s , t ( F , G , r ) converging to the extension groups Ext 𝒫 𝕜 * ( F ( r ) , G ( r ) ) between the...

Twisted action of the symmetric group on the cohomology of a flag manifold

Alain Lascoux, Bernard Leclerc, Jean-Yves Thibon (1996)

Banach Center Publications

Classes dual to Schubert cycles constitute a basis on the cohomology ring of the flag manifold F, self-adjoint up to indexation with respect to the intersection form. Here, we study the bilinear form (X,Y) :=〈X·Y, c(F)〉 where X,Y are cocycles, c(F) is the total Chern class of F and〈,〉 is the intersection form. This form is related to a twisted action of the symmetric group of the cohomology ring, and to the degenerate affine Hecke algebra. We give a distinguished basis for this form, which is a...

Twisted gamma filtration and algebras with orthogonal involution

Caroline Junkins (2014)

Open Mathematics

For the Grothendieck group of a split simple linear algebraic group, the twisted γ-filtration provides a useful tool for constructing torsion elements in -rings of twisted flag varieties. In this paper, we construct a non-trivial torsion element in the γ-ring of a complete flag variety twisted by means of a PGO-torsor. This generalizes the construction in the HSpin case previously obtained by Zainoulline.

Currently displaying 781 – 800 of 884