-theory of affine toric varieties.
It is proved that any isolated singularity of complete intersection has an algebraisation whose divisor class group is finitely generated.
A fundamental result of Beĭlinson–Ginzburg–Soergel states that on flag varieties and related spaces, a certain modified version of the category of -adic perverse sheaves exhibits a phenomenon known as Koszul duality. The modification essentially consists of discarding objects whose stalks carry a nonsemisimple action of Frobenius. In this paper, we prove that a number of common sheaf functors (various pull-backs and push-forwards) induce corresponding functors on the modified category or its triangulated...