Page 1

Displaying 1 – 18 of 18

Showing per page

Quadro-quadric Cremona transformations in low dimensions via the  J C -correspondence

Luc Pirio, Francesco Russo (2014)

Annales de l’institut Fourier

It has been previously established that a Cremona transformation of bidegree (2,2) is linearly equivalent to the projectivization of the inverse map of a rank 3 Jordan algebra. We call this result the “ J C -correspondence”. In this article, we apply it to the study of quadro-quadric Cremona transformations in low-dimensional projective spaces. In particular we describe new very simple families of such birational maps and obtain complete and explicit classifications in dimension 4 and 5.

Quaternionic geometry of matroids

Tamás Hausel (2005)

Open Mathematics

Building on a recent paper [8], here we argue that the combinatorics of matroids are intimately related to the geometry and topology of toric hyperkähler varieties. We show that just like toric varieties occupy a central role in Stanley’s proof for the necessity of McMullen’s conjecture (or g-inequalities) about the classification of face vectors of simplicial polytopes, the topology of toric hyperkähler varieties leads to new restrictions on face vectors of matroid complexes. Namely in this paper...

Quelques questions d’approximation faible pour les tores algébriques

Jean-Louis Colliot-Thélène, Venapally Suresh (2007)

Annales de l’institut Fourier

Soient K un corps global, T un K -tore, S un ensemble fini de places de K . On note K v le complété de K en v S . Soit T ( K ) , resp. T ( K v ) , le groupe des points K -rationnels, resp. K v -rationnels, de T . Notons T ( O v ) T ( K v ) le sous-groupe compact maximal. Nous montrons que pour T et S convenables l’application T ( K ) v S T ( K v ) / T ( O v ) induite par l’application diagonale n’est pas surjective. Cela implique que pour v convenable le groupe T ( O v ) ne couvre pas forcément toutes les classes de R -équivalence de T ( K v ) . Lorsque K est un corps de fonctions d’une variable...

Quotients of an affine variety by an action of a torus

Olga Chuvashova, Nikolay Pechenkin (2013)

Open Mathematics

Let X be an affine T-variety. We study two different quotients for the action of T on X: the toric Chow quotient X/C T and the toric Hilbert scheme H. We introduce a notion of the main component H 0 of H, which parameterizes general T-orbit closures in X and their flat limits. The main component U 0 of the universal family U over H is a preimage of H 0. We define an analogue of a universal family WX over the main component of X/C T. We show that the toric Chow morphism restricted on the main components...

Quotients of toric varieties by actions of subtori

Joanna Święcicka (1999)

Colloquium Mathematicae

Let X be an algebraic toric variety with respect to an action of an algebraic torus S. Let Σ be the corresponding fan. The aim of this paper is to investigate open subsets of X with a good quotient by the (induced) action of a subtorus T ⊂ S. It turns out that it is enough to consider open S-invariant subsets of X with a good quotient by T. These subsets can be described by subfans of Σ. We give a description of such subfans and also a description of fans corresponding to quotient varieties. Moreover,...

Currently displaying 1 – 18 of 18

Page 1