Page 1 Next

Displaying 1 – 20 of 47

Showing per page

Deformations of Kähler manifolds with nonvanishing holomorphic vector fields

Jaume Amorós, Mònica Manjarín, Marcel Nicolau (2012)

Journal of the European Mathematical Society

We study compact Kähler manifolds X admitting nonvanishing holomorphic vector fields, extending the classical birational classification of projective varieties with tangent vector fields to a classification modulo deformation in the Kähler case, and biholomorphic in the projective case. We introduce and analyze a new class of 𝑡𝑎𝑛𝑔𝑒𝑛𝑡𝑖𝑎𝑙𝑑𝑒𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛𝑠 , and show that they form a smooth subspace in the Kuranishi space of deformations of the complex structure of X . We extend Calabi’s theorem on the structure of compact Kähler...

Degeneration of Schubert varieties of S L n / B to toric varieties

Raika Dehy, Rupert W.T. Yu (2001)

Annales de l’institut Fourier

Using the polytopes defined in an earlier paper, we show in this paper the existence of degeneration of a large class of Schubert varieties of S L n to toric varieties by extending the method used by Gonciulea and Lakshmibai for a miniscule G / P to Schubert varieties in S L n .

Degrés d’homogénéité de l’ensemble des intersections complètes singulières

Olivier Benoist (2012)

Annales de l’institut Fourier

Un résultat classique de Boole montre que, sur un corps de caractéristique 0, l’ensemble des hypersurfaces singulières de degré d dans N est un diviseur de degré ( N + 1 ) ( d - 1 ) N de l’espace projectif de toutes les hypersurfaces. On obtient ici des formules analogues pour des intersections complètes de codimension et de degrés quelconques dans N , en toute caractéristique.

Derived category of toric varieties with small Picard number

Laura Costa, Rosa Miró-Roig (2012)

Open Mathematics

This paper aims to construct a full strongly exceptional collection of line bundles in the derived category D b(X), where X is the blow up of ℙn−r ×ℙr along a multilinear subspace ℙn−r−1×ℙr−1 of codimension 2 of ℙn−r ×ℙr. As a main tool we use the splitting of the Frobenius direct image of line bundles on toric varieties.

Currently displaying 1 – 20 of 47

Page 1 Next