Page 1

Displaying 1 – 5 of 5

Showing per page

A proof of the stratified Morse inequalities for singular complex algebraic curves using the Witten deformation

Ursula Ludwig (2011)

Annales de l’institut Fourier

The Witten deformation is an analytic method proposed by Witten which, given a Morse function f : M R on a smooth compact manifold M , allows to prove the Morse inequalities. The aim of this article is to generalise the Witten deformation to stratified Morse functions (in the sense of stratified Morse theory as developed by Goresky and MacPherson) on a singular complex algebraic curve. In a previous article the author developed the Witten deformation for the model of an algebraic curve with cone-like singularities...

Algebraic and symplectic Gromov-Witten invariants coincide

Bernd Siebert (1999)

Annales de l'institut Fourier

For a complex projective manifold Gromov-Witten invariants can be constructed either algebraically or symplectically. Using the versions of Gromov-Witten theory by Behrend and Fantechi on the algebraic side and by the author on the symplectic side, we prove that both points of view are equivalent

Amibes de variétés algébriques et dénombrement de courbes

Ilia Itenberg (2002/2003)

Séminaire Bourbaki

Les amibesdes variétés algébriques dans ( * ) n sont les images de ces variétés par l’application des moments Log : ( * ) n n , Log : ( z 1 , ... , z n ) ( log | z 1 | , ... , log | z n | ) . Des résultats obtenus par G. Mikhalkin montrent l’utilité des amibes pour l’étude des variétés algébriques réelles et complexes. Les amibes peuvent être déformées en des complexes polyédraux appelésvariétés algébriques tropicales. Cette déformation permet, en particulier, de calculer les invariants de Gromov-Witten du plan projectif et d’autres surfaces toriques en dénombrant des courbes...

An introduction to quantum sheaf cohomology

Eric Sharpe (2011)

Annales de l’institut Fourier

In this note we review “quantum sheaf cohomology,” a deformation of sheaf cohomology that arises in a fashion closely akin to (and sometimes generalizing) ordinary quantum cohomology. Quantum sheaf cohomology arises in the study of (0,2) mirror symmetry, which we review. We then review standard topological field theories and the A/2, B/2 models, in which quantum sheaf cohomology arises, and outline basic definitions and computations. We then discuss (2,2) and (0,2) supersymmetric Landau-Ginzburg...

Currently displaying 1 – 5 of 5

Page 1