On the finiteness of rational curves on quintic threefolds
We deal with a reducible projective surface with so-called Zappatic singularities, which are a generalization of normal crossings. First we compute the -genus of , i.e. the dimension of the vector space of global sections of the dualizing sheaf . Then we prove that, when is smoothable, i.e. when is the central fibre of a flat family parametrized by a disc, with smooth general fibre, then the -genus of the fibres of is constant.
Here we study the gonality of several projective curves which arise in a natural way (e.gċurves with maximal genus in , curves with given degree and genus for all possible , if and with large for arbitrary ).
We prove a recent conjecture of S. Lvovski concerning the periodicity behaviour of top Betti numbers of general finite subsets with large cardinality of an irreducible curve C ⊂ ℙⁿ.
Here we show the existence of strong restrictions for the Hilbert function of zerodimensional curvilinear subschemes of P n with one point as support and with high regularity index.
The conjecture on the (degree-codimension + 1) - regularity of projective varieties is proved for smooth linearly normal polarized varieties (X,L) with L very ample, for low values of Delta(X,L) = degree-codimension-1. Results concerning the projective normality of some classes of special varieties including scrolls over curves of genus 2 and quadric fibrations over elliptic curves, are proved.
Roughly speaking, by using the semi-stable minimal model program, we prove that the moduli part of an lc-trivial fibration coincides with that of a klt-trivial fibration induced by adjunction after taking a suitable generically finite cover. As an application, we obtain that the moduli part of an lc-trivial fibration is b-nef and abundant by Ambro’s result on klt-trivial fibrations.