Scrolls and quartics.
In this paper we compute the dimension of all the sth higher secant varieties of the Segre-Veronese embeddings Yd of the product P1 × P1 × P1 in the projective space PN via divisors of multidegree d = (a,b,c) (N = (a+1)(b+1)(c+1) - 1). We find that Yd has no deficient higher secant varieties, unless d = (2,2,2) and s = 7, or d = (2h,1,1) and s = 2h + 1, with defect 1 in both cases.
Classical sieve methods of analytic number theory have recently been adapted to a geometric setting. In the new setting, the primes are replaced by the closed points of a variety over a finite field or more generally of a scheme of finite type over . We will present the method and some of the surprising results that have been proved using it. For instance, the probability that a plane curve over is smooth is asymptotically as its degree tends to infinity. Much of this paper is an exposition...
We prove that any finite set of n-dimensional isolated algebraic singularities can be afforded on a simply connected projective variety.
We consider the k-osculating varietiesOk,d to the Veronese d?uple embeddings of P2. By studying the Hilbert function of certain zero-dimensional schemes Y ⊂ P2, we find the dimension of Osk,d, the (s?1)th secant varieties of Ok,d, for 3 ≤ s ≤ 6 and s = 9, and we determine whether those secant varieties are defective or not.
Si illustrano alcune relazioni tra le varietà proiettive complesse con duale degenere, le varietà la cui topologia si riflette in quella della sezione iperpiana in misura maggiore dell'ordinario e le varietà fibrate in spazi lineari su di una curva.
Here we introduce the concept of special effect varieties in higher dimension and we generalize to Pn, n ≥ 3, the two conjectures given in [2] for the planar case. Finally, we propose some examples on the product of projective spaces and we show how these results fit with the ones of Catalisano, Geramita and Gimigliano.
We study the singularities of the irreducible components of the Springer fiber over a nilpotent element with in a Lie algebra of type or (the so-called two columns case). We use Frobenius splitting techniques to prove that these irreducible components are normal, Cohen–Macaulay, and have rational singularities.