Displaying 21 – 40 of 46

Showing per page

Computing the quantum cohomology of some Fano threefolds and its semisimplicity

Gianni Ciolli (2004)

Bollettino dell'Unione Matematica Italiana

We compute explicit presentations for the small Quantum Cohomology ring of some Fano threefolds which are obtained as one- or two-curve blow-ups from P 3 or the smooth quadric. Systematic usage of the associativity property of quantum product implies that only a very small and enumerative subset of Gromov- Witten invariants is needed. Then, for these threefolds the Dubrovin conjecture on the semisimplicity of Quantum Cohomology is proven by checking the computed Quantum Cohomology rings and by showing...

Counting lines on surfaces

Samuel Boissière, Alessandra Sarti (2007)

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

This paper deals with surfaces with many lines. It is well-known that a cubic contains 27 of them and that the maximal number for a quartic is 64 . In higher degree the question remains open. Here we study classical and new constructions of surfaces with high number of lines. We obtain a symmetric octic with 352 lines, and give examples of surfaces of degree d containing a sequence of d ( d - 2 ) + 4 skew lines.

Courbes lisses sur les surfaces rationnelles génériques : un lemme d'Horace différentiel

Thierry Mignon (2000)

Annales de l'institut Fourier

Nous démontrons un lemme permettant d’étudier l’irréductibilité et la lissité (hors des singularités prescrites) de la courbe plane générique de degré d passant par r points génériques avec des multiplicités m 1 , ... , m r fixées par avance. Ce lemme repose sur la “méthode d’Horace”, introduite par A. Hirschowitz. Il est appliqué ici à l’étude des courbes de genre inférieur ou égal à 4 .

Currently displaying 21 – 40 of 46