Displaying 61 – 80 of 128

Showing per page

Multiscale analysis of wave propagation in random media. Application to correlation-based imaging

Josselin Garnier (2013/2014)

Séminaire Laurent Schwartz — EDP et applications

We consider sensor array imaging with the purpose to image reflectors embedded in a medium. Array imaging consists in two steps. In the first step waves emitted by an array of sources probe the medium to be imaged and are recorded by an array of receivers. In the second step the recorded signals are processed to form an image of the medium. Array imaging in a scattering medium is limited because coherent signals recorded at the receiver array and coming from a reflector to be imaged are weak and...

New limit theorems related to free multiplicative convolution

Noriyoshi Sakuma, Hiroaki Yoshida (2013)

Studia Mathematica

Let ⊞, ⊠, and ⊎ be the free additive, free multiplicative, and boolean additive convolutions, respectively. For a probability measure μ on [0,∞) with finite second moment, we find a scaling limit of ( μ N ) N as N goes to infinity. The -transform of its limit distribution can be represented by Lambert’s W-function. From this, we deduce that the limiting distribution is freely infinitely divisible, like the lognormal distribution in the classical case. We also show a similar limit theorem by replacing free...

New results about semi-positive matrices

Jonathan Dorsey, Tom Gannon, Charles R. Johnson, Morrison Turnansky (2016)

Czechoslovak Mathematical Journal

Our purpose is to present a number of new facts about the structure of semipositive matrices, involving patterns, spectra and Jordon form, sums and products, and matrix equivalence, etc. Techniques used to obtain the results may be of independent interest. Examples include: any matrix with at least two columns is a sum, and any matrix with at least two rows, a product, of semipositive matrices. Any spectrum of a real matrix with at least 2 elements is the spectrum of a square semipositive matrix,...

On a surprising relation between the Marchenko–Pastur law, rectangular and square free convolutions

Florent Benaych-Georges (2010)

Annales de l'I.H.P. Probabilités et statistiques

In this paper, we prove a result linking the square and the rectangular R-transforms, the consequence of which is a surprising relation between the square and rectangular versions the free additive convolutions, involving the Marchenko–Pastur law. Consequences on random matrices, on infinite divisibility and on the arithmetics of the square versions of the free additive and multiplicative convolutions are given.

On bilinear forms based on the resolvent of large random matrices

Walid Hachem, Philippe Loubaton, Jamal Najim, Pascal Vallet (2013)

Annales de l'I.H.P. Probabilités et statistiques

Consider a N × n non-centered matrix 𝛴 n with a separable variance profile: 𝛴 n = D n 1 / 2 X n D ˜ n 1 / 2 n + A n . Matrices D n and D ˜ n are non-negative deterministic diagonal, while matrix A n is deterministic, and X n is a random matrix with complex independent and identically distributed random variables, each with mean zero and variance one. Denote by Q n ( z ) the resolvent associated to 𝛴 n 𝛴 n * , i.e. Q n ( z ) = 𝛴 n 𝛴 n * - z I N - 1 . Given two sequences of deterministic vectors ( u n ) and ( v n ) with bounded Euclidean norms, we study the limiting behavior of the random bilinear form: u n * Q n ( z ) v n z - + , as the dimensions...

On elliptic curves and random matrix theory

Mark Watkins (2008)

Journal de Théorie des Nombres de Bordeaux

Rubinstein has produced a substantial amount of data about the even parity quadratic twists of various elliptic curves, and compared the results to predictions from random matrix theory. We use the method of Heegner points to obtain a comparable (yet smaller) amount of data for the case of odd parity. We again see that at least one of the principal predictions of random matrix theory is well-evidenced by the data.

Currently displaying 61 – 80 of 128